

SCHOOL OF PUBLIC HEALTH Powerful ideas for a healthier world

# Global health and economic benefits of prospective Strep A vaccines

Maddalena Ferranna Harvard T.H. Chan School of Public Health

June 6, 2022



#### Introduction

- Vaccination yields both health and socioeconomic benefits (e.g., gains in education, cognition, productivity).
- Rational and fair allocation of public funds requires information on the full value of vaccination.
  - Comparison between different uses of fixed health budget or between health and non-health interventions.



#### Approach

 Traditional health-centric cost-effectiveness analysis fails to capture the full value of vaccination.

We estimate the full value of prospective Strep A vaccines using a societal perspective benefit-costs analysis.

We rely on the concept of Value-per-Statistical-Life (VSL) to estimate the full value of Strep A vaccines.



Department of Global Health and Population

# Value per Statistical Life

- VSL is derived from individuals' willingness to trade off small changes in income for small changes in risk of death.
- VSL is estimated based on individuals' reported preferences or based on workplace or consumption behavior (e.g., wage premium for risky job; bike helmet purchase).
- VSL captures both the intrinsic and the instrumental value of being alive (i.e., any averted earnings or income loss).



## Example of VSL

- If someone accepts a pay cut of \$1000 per year to reduce their annual mortality risk by 1 in 10,000, the monetary value of their statistical life is \$10 million.
- Equivalently, each of 10,000 people, identical in all relevant ways, would be willing to pay an equal share of a \$10 million cost for a project that reduces the expected fatalities in a year by one.
- U.S. VSL  $\simeq$  \$10 million
- OECD VSL  $\simeq$  \$3 million

#### Value of Strep A vaccination

#### Issues with VSL

- VSL estimates are mostly from high income-countries.
- VSL typically increases with income. This can have unacceptable ethical consequences in global analyses since the interests of the well-off tend to count more than the interests of the worse-off.
- Not many estimates on the willingness to pay for averting nonfatal cases.





Department of Global Health and Population

## Assumptions



Department of Global Health nd Population

- VSL is proportional to income.
  - Elasticity of VSL to income  $\simeq 1$ .
  - Income grows over time.
- The monetary value of being alive for an additional year is equal to the value-per-statistical-life-year (VSLY) (=VSL divided by remaining life expectancy).
  - VSLY from 1 to 5 times income per-capita (depending on baseline VSL estimate).
- The monetary value of averting a year with disability is also equal to VSLY.
- Future monetary benefits are discounted at a constant annual rate.
- Same VSLY is applied to all countries independently of their income level.

Expected total benefits of Strep A vaccines for 2022-2051 birth cohorts across the six vaccination scenarios (in trillion US\$)



Assumptions: 3% discount rate; VSLY evaluated at three times global GDP per-capita (\$11,000); 2% growth rate.

Expected benefits of prospective Strep A vaccines amount to \$1.44 trillion if the vaccine is administered at birth (1.7% of global income in 2020), and to \$2.41 if the vaccine is administered at age 5 (2.8% of global income in 2020).



Department of Global Health and Population

#### Importance of normative assumptions

Total benefits of Strep A vaccination at age 5 for 2022-2051 birth cohorts by scenario and normative assumptions (in trillions US\$)

| Scenario   | Baseline<br>assumptions | Least<br>favorable<br>assumption | Most favorable assumption |
|------------|-------------------------|----------------------------------|---------------------------|
| Scenario 1 | \$2.7                   | \$0.6                            | \$7.7                     |
| Scenario 2 | \$2.8                   | \$0.6                            | \$8.0                     |
| Scenario 3 | \$2.2                   | \$0.5                            | \$5.9                     |
| Scenario 4 | \$2.1                   | \$0.5                            | \$5.9                     |
| Scenario 5 | \$2.9                   | \$0.4                            | \$4.8                     |
| Scenario 6 | \$1.7                   | \$0.3                            | \$4.9                     |
| Average    | \$2.4                   | \$0.5                            | \$6.2                     |



SCHOOL OF PUBLIC HEALTH Department of Global Health and Population

<u>Baseline</u>: 3% discount rate; VSLY is equal to three times GDP per capita <u>Least favorable</u>: 5% discount rate; VSLY is equal to GDP per capita <u>Most favorable</u>: 1% discount rate; VSLY is equal to five times GDP per capita

#### Conclusions

Preliminary estimates point to large full societal value of prospective Strep A vaccines.

#### Refinements:

- Different DALYs may have different value depending on their socioeconomic implications.
  - Use of life-cycle economic models to simulate the value of preventing a DALY across different individuals.
- Equity-weighted benefit-cost analysis to account for distributional considerations within/between countries.
- Willingness to pay estimates and behavioral constraints.



epartment of Global Health nd Population



SCHOOL OF PUBLIC HEALTH Department of Global Health and Population

#### Thank you!

Comments or questions?

Please contact mferranna@hsph.harvard.edu